'
Научный журнал «Вестник науки»

Режим работы с 09:00 по 23:00

zhurnal@vestnik-nauki.com

Информационное письмо

  1. Главная
  2. Архив
  3. Вестник науки №4 (37) том 3
  4. Научная статья № 3

Просмотры  112 просмотров

Кенжина Л.Ж.

  


РАЗРАБОТКА МЕТОДОВ ОБНАРУЖЕНИЯСУБЪЕКТИВНОСТИ ДЛЯ АНАЛИЗА НАСТРОЕНИЙ В СОЦИАЛЬНЫХ СЕТЯХ *

  


Аннотация:
в данной статье представлен краткий обзор методов анализа и извлечения данных из фотографических изображений в социальных сетях с целью обнаружения субъективности и прогнозирования с помощью новых технологий   

Ключевые слова:
большие данные, анализ социальных сетей, искусственный интеллект, классификация, фотографические изображения   


С развитием новых технологий и цифровизации, все больше набирает популярность развитие онлайн платформ для работы, бизнеса, саморазвития, развлечения (фильмы, музыка, изображения). Кроме того, такие онлайн платформы зачастую становятся площадкой для размещения информации о себе, обмена своими интересными моментами из жизни, эмоциями, взглядами на жизнь или на публикации других пользователей социальных сетей. По данным мониторинга Ranking.kz одними из популярных социальных сетей в мире являются Facebook с долей пользователей 69,8%, Pinterest (11,9%), Twitter (9,5%), YouTube (4,9%) и Instagram (2,6%). В Казахстане лидерами являются сеть Pinterest: 32,7%, YouTube (20,4%), «ВКонтакте» (14,9%), Facebook (13,5%) и Twitter (11,3%). В указанных социальных сетях содержится большое количество данных из которых можно извлечь ценную информацию о пользователе и его окружающих людях используя возможности новых технологий таких как анализ больших данных, data mining и искусственный интеллект. В данной статье мы рассмотрим пути обнаружения субъективности на основе анализа настроений в социальных сетях. Методы обнаружения субъективности для анализа настроений в социальных сетях Согласно отчету о состоянии цифровой сферы Global Digital 2021 We Are Social и Hootsuite в 2021 году социальными сетями пользуются 53,6 % мирового населения. Среди самых популярных причин нахождения в социальных сетях человека являете следующее: быть в курсе новостей и событий - 36,5 %; просматривать развлекательный/смешной контент - 35 %; занять свободное время - 34,4 %; знать, чем занимаются друзья - 33 %; делиться фотографиями и видео - 27,9 %; искать товары с целью их купить - 27,5 %; общаться с людьми - 26,8 %; не отставать от друзей (потому что многие друзья есть в соцсетях) - 25,1%; делиться своим мнением - 23,4%; знакомиться с людьми - 21,3 %; общаться по работе - 20,3 %; ничего не пропустить - 18,9 %; смотреть и отслеживать спортивные события - 18,6 %; следить за новостями известных людей - 17,6 %; делиться информацией о своей жизни - 16,3 %; продвигать и поддерживать благотворительные мероприятия - 12,5% Ежедневно через социальные сети протекает большой поток структурированных и неструктурированных данных, обработка и анализ которых позволит получить экономические, политические и социальные выгоды для бизнеса, государства и для самого человека. Результаты анализа социальных сетей поддерживает бизнес сообщество в части проведения анализа клиентов, улучшения продукта и увеличения дохода компании. В государственном секторе способствует развитию стратегии управления их деятельности и поддержке принятия решения. Анализ социальных сетей так же используется в целях защиты национальной безопасности и применения правоохранительных мер. Основным источником анализа социальных сетей являются текстовые данные. Но в последнее время анализ изображений, аудио-видео контента становится все более важным. Будь это мем, фото, селфи или ссылка на статью, социальные сети все чаще наполняются большим количеством изображений и меньшим количеством текста. В этой статье я хочу остановиться на анализе фотографического изображения (фото, селфи), обработке их с data minig-а и прогнозировании с помощью искусственного интеллекта. Мировые гиганты как Facebook, Google и другие разрабатывает технологии, использующие искусственный интеллект для анализа контента изображений. Они все чаще применяют аналитику к изображениям, чтобы лучше понять их влияние на бизнес. Так, как же научить технологии на основе изображения и имеющейся текстовой информации превратить данные в формулу или набор правил, которые мы сможем в будущем использовать для предсказания событий. Если сравнить технологии с человеком, то искусственный интеллект человека работает на протяжении всей его жизни. Имея личные данные (возраст, вес, тип кожи), человек знает, что если он не будет ухаживать за своим лицом, то появятся морщинки, прыщи, черные точки и т.д. На основе прошлых данных и настоящих данных он обучил свои мозг, выстроил формулу или правило: темные пятна = косметологические процедуры. Также и от изображений можно извлечь данные и классифицировать их, чтобы новые технологии искусственного интеллекта с математической точностью понимали суть фотографии. Для анализа и извлечения данных от изображения нам необходимо воспользоваться простой классификацией ответив на простые вопросы: для кого? (с целью определения аудитории), о чем? (с целью определения областью исследования) и зачем? (с целью определения конечного результата). Продолжая тему проблемной кожи, представим, что вы – менеджер по рекламе в головном офисе косметологической компании. И перед вами стоит задача увеличить объем продажи крема для лица и рук, маски для лица и рук, сыворотки для лица и другие предметы ухода за лицом и рук для женщин в возрасте от 25 до 60 лет. Из данных фокус-групп вы знаете, что у женщин в данном возрасте входит в привычку покупать средства по уходу за лицом. Ваша задача максимизировать шансы стать магазином № 1 для этих людей. Но, для этого необходимо, чтобы эти женщины увидели вашу рекламу до того, как купят свой первый крем где-то еще. И они должны узнать о вас до того, как у них появятся первые морщинки. Из этого можно сделать вывод: вам нужна прогностическая модель, способная определить потенциальную женщину с морщинками для дальнейшего целевого маркетинга. Основным секретным оружием для построения такой модели являются учетные записи пользователя социальной сети, где нам известен возраст, пол пользователя, место нахождения и круг общения, а также его фотографическое изображение (фото или селфи).  Самым простым способом обнаружения субъективности по отношению к размещенному изображению являются комментарии и количество «лайков». Рассматривая комментарии, мы конечно столкнемся с «набором слов», где мы применим наивный байесовский классификатор и научим его отличать одно слово от другого. Кроме того, проведем анализ пользователей, оставивших отметку «лайк» под фотографическим изображением. И третьим основным шагом является анализ и извлечение данных из фотографических изображений пользователя социальной сети (настроение, пол, возраст, место расположения и т.д.) с помощью новых технологии и сравним с данными учетной записи. Анализируя изображения можно одновременно распознавать несколько элементов на фотографии, включая логотипы, лица, действия, объекты, сцены и автоматически выводить основную информацию о том, что «женщина стоит под солнцем с велосипедом и горами на заднем плане». Технология, лежащая в основе анализа изображений, быстро развивается, что значительно упрощает масштабирование. Изображения показывают контекстные, средовые и эмоциональные факторы, которые невозможно получить с помощью простого текста. Однако, анализ изображений это не только их распознавание и сбор данных, но и объединение с другими источниками данных с разработкой модели для прогнозирования возникающих тенденций в социальных сетях и реагирования на них.

  


Полная версия статьи PDF

Номер журнала Вестник науки №4 (37) том 3

  


Ссылка для цитирования:

Кенжина Л.Ж. РАЗРАБОТКА МЕТОДОВ ОБНАРУЖЕНИЯСУБЪЕКТИВНОСТИ ДЛЯ АНАЛИЗА НАСТРОЕНИЙ В СОЦИАЛЬНЫХ СЕТЯХ // Вестник науки №4 (37) том 3. С. 14 - 20. 2021 г. ISSN 2712-8849 // Электронный ресурс: https://www.вестник-науки.рф/article/4333 (дата обращения: 25.02.2024 г.)


Альтернативная ссылка латинскими символами: vestnik-nauki.com/article/4333



Нашли грубую ошибку (плагиат, фальсифицированные данные или иные нарушения научно-издательской этики) ?
- напишите письмо в редакцию журнала: zhurnal@vestnik-nauki.com


Вестник науки СМИ ЭЛ № ФС 77 - 84401 © 2021.    16+




* В выпусках журнала могут упоминаться организации (Meta, Facebook, Instagram) в отношении которых судом принято вступившее в законную силу решение о ликвидации или запрете деятельности по основаниям, предусмотренным Федеральным законом от 25 июля 2002 года № 114-ФЗ 'О противодействии экстремистской деятельности' (далее - Федеральный закон 'О противодействии экстремистской деятельности'), или об организации, включенной в опубликованный единый федеральный список организаций, в том числе иностранных и международных организаций, признанных в соответствии с законодательством Российской Федерации террористическими, без указания на то, что соответствующее общественное объединение или иная организация ликвидированы или их деятельность запрещена.